Local Convergence Analysis of Augmented Lagrangian Methods for Piecewise Linear-Quadratic Composite Optimization Problems

نویسندگان

چکیده

Local Convergence Analysis of Augmented Lagrangian Methods for Piecewise Linear-Quadratic Composite Optimization Problems

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global linear convergence of an augmented Lagrangian algorithm for solving convex quadratic optimization problems

We consider an augmented Lagrangian algorithm for minimizing a convex quadratic function subject to linear inequality constraints. Linear optimization is an important particular instance of this problem. We show that, provided the augmentation parameter is large enough, the constraint value converges globally linearly to zero. This property is viewed as a consequence of the proximal interpretat...

متن کامل

Achieving Linear or Quadratic Convergence on Piecewise Smooth Optimization Problems

Many problems in machine learning involve objective functions that are piecewise smooth [7] due to the occurrence of absolute values mins and maxes in their evaluation procedures. See e.g. [8]. For such function we derived in [3] first order (KKT) and second order (SSC) optimality conditions, which can be checked on the basis of a local piecewise linearization [2] that can be computed in an AD ...

متن کامل

Global Linear Convergence of an Augmented Lagrangian Algorithm to Solve Convex Quadratic Optimization Problems

We consider an augmented Lagrangian algorithm for minimizing a convex quadratic function subject to linear inequality constraints. Linear optimization is an important particular instance of this problem. We show that, provided the augmentation parameter is large enough, the constraint value converges globally linearly to zero. This property is viewed as a consequence of the proximal interpretat...

متن کامل

Affine Invariant Convergence Analysis for Inexact Augmented Lagrangian-SQP Methods

An affine invariant convergence analysis for inexact augmented Lagrangian-SQP methods is presented. The theory is used for the construction of an accuracy matching between iteration errors and truncation errors, which arise from the inexact linear system solvers. The theoretical investigations are illustrated numerically by an optimal control problem for the Burgers equation.

متن کامل

Convergence Analysis of the Augmented Lagrangian Method for Nonlinear Second-Order Cone Optimization Problems

The paper focuses on the convergence rate of the augmented Lagrangian method for nonlinear second-order cone optimization problems. Under a set of assumptions of sufficient conditions, including the componentwise strict complementarity condition, the constraint nondegeneracy condition and the second order sufficient condition, we first study some properties of the augmented Lagrangian and then ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Siam Journal on Optimization

سال: 2021

ISSN: ['1095-7189', '1052-6234']

DOI: https://doi.org/10.1137/20m1375188